II YEAR I SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>CE301PC</td>
<td>Surveying and Geomatics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE302PC</td>
<td>Engineering Geology</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CE303PC</td>
<td>Strength of Materials - I</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>MA304BS</td>
<td>Probability and Statistics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>CE305PC</td>
<td>Fluid Mechanics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>CE306PC</td>
<td>Surveying Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>CE307PC</td>
<td>Strength of Materials Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>CE308PC</td>
<td>Engineering Geology Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>*MC309</td>
<td>Constitution of India</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>17</td>
<td>3</td>
<td>8</td>
<td>21</td>
</tr>
</tbody>
</table>

II YEAR II SEMESTER

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EE401ES</td>
<td>Basic Electrical and Electronics Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>CE402ES</td>
<td>Basic Mechanical Engineering for Civil Engineers</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>CE403PC</td>
<td>Building Materials, Construction and Planning</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>CE404PC</td>
<td>Strength of Materials - II</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>CE405PC</td>
<td>Hydraulics and Hydraulic Machinery</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>CE406PC</td>
<td>Structural Analysis - I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>CE407PC</td>
<td>Computer aided Civil Engineering Drawing</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>8</td>
<td>EE409ES</td>
<td>Basic Electrical and Electronics Engineering Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>CE409PC</td>
<td>Hydraulics and Hydraulic Machinery Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>10</td>
<td>*MC409</td>
<td>Gender Sensitization Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total Credits</td>
<td>17</td>
<td>0</td>
<td>10</td>
<td>21</td>
</tr>
</tbody>
</table>

*MC – Satisfactory/Unsatisfactory
Course Objectives: The object of the course student should have the capability to:
- Know the principle and methods of surveying.
- Measure horizontal and vertical distances and angles
- Recording of observation accurately
- Perform calculations based on the observation
- Identification of source of errors and rectification methods
- Apply surveying principles to determine areas and volumes and setting out curves
- Use modern surveying equipment's for accurate results

Course Outcomes: Course will enable the student to:
- Apply the knowledge to calculate angles, distances and levels
- Identify data collection methods and prepare field notes
- Understand the working principles of survey instruments, measurement errors and corrective measures
- Interpret survey data and compute areas and volumes, levels by different type of equipment and relate the knowledge to the modern equipment and methodologies

UNIT - I
Measurement of Distances and Directions
Linear distances- Approximate methods, Direct Methods- Chains- Tapes, ranging, Tape corrections.
Prismatic Compass- Bearings, included angles, Local Attraction, Magnetic Declination and dip.

UNIT - II
Leveling- Types of levels and levelling staves, temporary adjustments, methods of levelling, booking and Determination of levels, Effect of Curvature of Earth and Refraction.
Contouring- Characteristics and uses of Contours, methods of contour surveying.
Areas - Determination of areas consisting of irregular boundary and regular boundary.
Volumes - Determination of volume of earth work in cutting and embankments for level section, volume of borrow pits, capacity of reservoirs.

UNIT - III
Theodolite Surveying: Types of Theodolites, Fundamental Lines, temporary adjustments, measurement of horizontal angle by repetition method and reiteration method, measurement of vertical Angle, Trigonometrical levelling when base is accessible and inaccessible.
Traversing: Methods of traversing, traverse computations and adjustments, Omitted measurements.

UNIT - IV
Curves: Types of curves and their necessity, elements of simple, compound, reverse, transition and vertical curves.
Tacheometric Surveying: Principles of Tacheometry, stadia and tangential methods of Tacheometry,
UNIT - V
Photogrammetry Surveying:
Introduction, Basic concepts, perspective geometry of aerial photograph, relief and tilt displacements, terrestrial photogrammetry, flight planning; Stereoscopy, ground control extension for photographic mapping- aerial triangulation, radial triangulation, methods; photographic mapping- mapping using paper prints, mapping using stereoplottting instruments, mosaics, map substitutes.

TEXT BOOKS:

REFERENCES:
CE302PC: ENGINEERING GEOLOGY

B.Tech. II Year I Sem.

Course Objectives: The objective of this Course is

- To give the basics knowledge of Geology that is required for constructing various Civil Engineering Structures, basic Geology, Geological Hazardous and Environmental Geology
- To focus on the core activities of engineering geologists – site characterization and geologic hazard identification and mitigation. Planning and construction of major Civil Engineering projects

Course Outcomes: At the end of the course, the student will be able to:

- Site characterization and how to collect, analyze, and report geologic data using standards in engineering practice
- The fundamentals of the engineering properties of Earth materials and fluids.
- Rock mass characterization and the mechanics of planar rock slides and topples

UNIT - I

Introduction: Importance of geology from Civil Engineering point of view. Brief study of case histories of failure of some Civil Engineering constructions due to geological draw backs. Importance of Physical geology, Petrology and Structural geology.

Weathering of Rocks: Its effect over the properties of rocks importance of weathering with reference to dams, reservoirs and tunnels weathering of common rock like “Granite”

UNIT - II

Mineralogy: Definition of mineral, Importance of study of minerals, Different methods of study of minerals. Advantages of study of minerals by physical properties. Role of study of physical properties of minerals in the identification of minerals. Study of physical properties of following common rock forming minerals: Feldspar, Quartz, Flint, Jasper, Olivine, Augite, Hornblende, Muscovite, Biotite, Asbestos, Chlorite, Kyanite, Garnet, Talc, Calcite. Study of other common economics minerals such as Pyrite, Hematite, Magnetite, Chlorite, Galena, Pyrolusite, Graphite, Magnesite, and Bauxite.

UNIT - III

Structural Geology: Out crop, strike and dip study of common geological structures associating with the rocks such as folds, faults uncomformities, and joints - their important types and case studies. Their importance Insitu and drift soils, common types of soils, their origin and occurrence in India, Stabilisation of soils. Ground water, Water table, common types of ground water, springs, cone of depression, geological controls of ground water movement, ground water exploration.

UNIT - IV

Earth Quakes: Causes and effects, shield areas and seismic belts. Seismic waves, Richter scale, precautions to be taken for building construction in seismic areas. Landslides, their causes and effect; measures to be taken to prevent their occurrence.

UNIT - V

Geology of Dams, Reservoirs, and Tunnels: Types of dams and bearing of Geology of site in their selection, Geological Considerations in the selection of a dam site. Analysis of dam failures of the past. Factors contributing to the success of a reservoir. Geological factors influencing water Lightness and life of reservoirs - Purposes of tunneling, Effects of Tunneling on the ground Role of Geological Considerations (i.e. Tithological, structural and ground water) in tunneling over break and lining in tunnels.

TEXT BOOKS:
1. Engineering Geology by N. Chennakesavulu, McMillan, India Ltd. 2005

REFERENCES:
4. Engineering Geology for Civil Engineers – P.C. Varghese PHI
CE303PC: STRENGTH OF MATERIALS – I

B.Tech. II Year I Sem. L T/P/D C
3 1/0/0 4

Pre-Requisites: Engineer Mechanics

Course Objectives: The objective of this Course is
- To understand the nature of stresses developed in simple geometries such as bars, cantilevers and beams for various types of simple loads
- To calculate the elastic deformation occurring in simple members for different types of loading.
- To show the plane stress transformation with a particular coordinate system for different orientation of the plane.
- To know different failure theories adopted in designing of structural members

Course Outcome: On completion of the course, the student will be able to:
- Describe the concepts and principles, understand the theory of elasticity including strain/displacement and Hooke’s law relationships; and perform calculations, related to the strength of structured and mechanical components.
- Recognize various types loads applied on structural components of simple framing geometries and understand the nature of internal stresses that will develop within the components.
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading
- Analyze various situations involving structural members subjected to plane stresses by application of Mohr’s circle of stress;
- Frame an idea to design a system, component, or process

UNIT – I
SIMPLE STRESSES AND STRAINS:

UNIT – II
SHEAR FORCE AND BENDING MOMENT:
Types of beams – Concept of shear force and bending moment – S.F and B.M diagrams for cantilever, simply supported including overhanging beams subjected to point loads, uniformly distributed load, uniformly varying load, couple and combination of these loads – Point of contraflexure – Relation between S.F., B.M and rate of loading at a section of a beam.

UNIT – III
FLEXURAL STRESSES:
Theory of simple bending – Assumptions – Derivation of bending equation- Section Modulus Determination of flexural/bending stresses of rectangular and circular sections (Solid and Hollow), I,T, Angle and Channel sections – Design of simple beam sections.

SHEAR STRESSES:
Derivation of formula for shear stress distribution – Shear stress distribution across various beam sections like rectangular, circular, triangular, I, T angle and channel sections.
UNIT – IV
DEFLECTION OF BEAMS:
Slope, deflection and radius of curvature – Differential equation for the elastic line of a beam – Double integration and Macaulay’s methods – Determination of slope and deflection for cantilever and simply supported beams subjected to point loads, U.D.L, Uniformly varying load and couple -Mohr’s theorems – Moment area method – Application to simple cases.
CONJUGATE BEAM METHOD: Introduction – Concept of conjugate beam method - Difference between a real beam and a conjugate beam - Deflections of determinate beams with constant and different moments of inertia.

UNIT – V
PRINCIPAL STRESSES:
Introduction – Stresses on an oblique plane of a bar under axial loading – compound stresses – Normal and tangential stresses on an inclined plane for biaxial stresses – Two perpendicular normal stresses accompanied by a state of simple shear –Principal stresses – Mohr’s circle of stresses – ellipse of stress - Analytical and graphical solutions.

TEXT BOOKS:
2. Mechanics of Materials by Dr. B.C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain

REFERENCES:
1. Mechanics of material by R.C. Hibbeler, Prentice Hall publications
MA304BS: PROBABILITY AND STATISTICS

B.Tech. II Year I Sem. L T/P/D C
3 1/0/0 4

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives: To learn

- The ideas of probability and random variables and various discrete and continuous probability distributions and their properties.
- The basic ideas of statistics including measures of central tendency, correlation and regression.
- The statistical methods of studying data samples.

Course outcomes: After learning the contents of this paper the student must be able to

- Formulate and solve problems involving random variables and apply statistical methods for analysing experimental data.

UNIT - I: Basic Probability
Probability spaces, conditional probability, independent events, and Bayes’ theorem.
Random variables: Discrete and continuous random variables, Expectation of Random Variables, Moments, Variance of random variables, Chebyshev’s Inequality

UNIT - II: Discrete Probability distributions
Binomial, Poisson, evaluation of statistical parameters for these distributions, Poisson approximation to the binomial distribution

UNIT - III: Continuous Random variable & Distributions
Continuous random variables and their properties, distribution functions and densities, Normal, exponential and gamma distributions, evaluation of statistical parameters for these distributions

UNIT - IV: Applied Statistics
Curve fitting by the method of least squares- fitting of straight lines, second degree parabolas and more general curves; Correlation and regression – Rank correlation.

UNIT - V: Testing of Hypothesis
Test of significance: Large sample test for single proportion, difference of proportions, single mean, difference of means; Test for single mean, difference of means for small samples, test for ratio of variances for small samples.

TEXT BOOKS:

REFERENCES:
CE305PC: FLUID MECHANICS

B.Tech. II Year I Sem. L T/P/D C 3 1/0/0 4

Course Objectives: The objectives of the course are to

- Introduce the concepts of fluid mechanics useful in Civil Engineering applications
- Provide a first level exposure to the students to fluid statics, kinematics and dynamics.
- Learn about the application of mass, energy and momentum conservation laws for fluid flows
- Train and analyse engineering problems involving fluids with a mechanistic perspective is essential for the civil engineering students
- To obtain the velocity and pressure variations in various types of simple flows
- To prepare a student to build a good fundamental background useful in the application-intensive courses covering hydraulics, hydraulic machinery and hydrology

Course Outcomes: Upon completion of this course, students should be able to:

- Understand the broad principles of fluid statics, kinematics and dynamics
- Understand definitions of the basic terms used in fluid mechanics and characteristics of fluids and its flow
- Understand classifications of fluid flow
- Be able to apply the continuity, momentum and energy principles

UNIT – I
Properties of Fluid
Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation of viscosity with temperature, Newton law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics

UNIT - II
Fluid Kinematics
Classification of fluid flow: steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluid flow; one, two- and three-dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One, two- and three-dimensional continuity equations in Cartesian coordinates.

Fluid Dynamics
Surface and Body forces -Euler’s and Bernoulli’s equation; Energy correction factor; Momentum equation. Vortex flow – Free and Forced. Bernoulli’s equation to real fluid flows.

UNIT - III
Flow Measurement in Pipes
Practical applications of Bernoulli’s equation: venturimeter, orifice meter and pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend.

Flow Over Notches & Weirs
Flow through rectangular; triangular and trapezoidal notches and weirs; End contractions; Velocity of approach. Broad crested weir.
UNIT – IV
Flow through Pipes
Reynolds experiment, Reynolds number, Loss of head through pipes, Darcy-Wiesbatch equation, minor losses, total energy line, hydraulic grade line, Pipes in series, equivalent pipes, pipes in parallel, siphon, branching of pipes, three reservoir problem, power transmission through pipes. Analysis of pipe networks: Hardy Cross method, water hammer in pipes and control measures.

UNIT - V
Laminar & Turbulent Flow
Laminar flow through: circular pipes, annulus and parallel plates.

Boundary Layer Concepts
Boundary Layer Analysis-Assumption and concept of boundary layer theory. Boundary-layer thickness, displacement, momentum & energy thickness, laminar and Turbulent boundary layers on a flat plate; Laminar sub-layer, smooth and rough boundaries. Local and average friction coefficients. Separation and Control. Definition of Drag and Lift and types drag, magnus effect.

TEXT BOOKS:
3. Fluid Mechanics by R.C. Hibbeler, Pearson India Education Services Pvt. Ltd

REFERENCE BOOKS:
4. Fluid mechanics & Hydraulic Machines, Domkundwar & Domkundwar Dhanpat Rai &Co
CE306PC: SURVEYING LAB

B.Tech. II Year I Sem. L T/P/D C
0 0/3/0 1.5

Pre-Requisites: Surveying Theory

Course Objectives:
- To impart the practical knowledge in the field- measuring distances, directions, angles,
- To determining R.L.’s areas and volumes
- To set out Curves
- To stake out points
- To traverse the area
- To draw Plans and Maps

Course Outcomes: At the end of the course, the student will be able to:
- Apply the principle of surveying for civil Engineering Applications
- Calculation of areas, Drawing plans and contour maps using different measuring equipment at field level
- Write a technical laboratory report

List of Experiments
1. Surveying of an area by chain, and compass survey (closed traverse) & plotting.
2. Determine of distance between two inaccessible points with compass
3. Radiation method, intersection methods by plane table survey.
4. Levelling – Longitudinal and cross-section and plotting
5. Measurement of Horizontal and vertical angle by theodolite
6. Trigonometric leveling using theodolite
7. Height and distances using principles of tachometric surveying
8. Determination of height, remote elevation, distance between inaccessible points using total station
9. Determination of Area using total station and drawing map
10. Traversing using total station for drawing contour map
11. Stake out using total station
12. Setting out Curve using total station
CE307PC: STRENGTH OF MATERIALS LAB

B.Tech. II Year I Sem.

Course Objectives:
- Make measurements of different strains, stress and elastic properties of materials used in Civil Engineering.
- Provide physical observations to complement concepts learnt
- Introduce experimental procedures and common measurement instruments, equipment, devices.
- Exposure to a variety of established material testing procedures and techniques
- Different methods of evaluation and inferences drawn from observations

Course Outcomes: At the end of the course the student will be able to:
- Configure & Operate a data acquisition system using various testing machines of solid materials
- Compute and Analyze engineering values (e.g. stress or strain) from laboratory measurements.
- Write a technical laboratory report

List of Experiments:
1. Tension test
2. Bending test on (Steel / Wood) Cantilever beam.
3. Bending test on simple support beam.
4. Torsion test
5. Hardness test
6. Spring test
7. Compression test on wood or concrete
8. Impact test
9. Shear test
10. Verification of Maxwell’s Reciprocal theorem on beams.
11. Use of electrical resistance strain gauges
CE308PC: ENGINEERING GEOLOGY LAB

B.Tech. II Year I Sem. L T/P/D C
 0 0/2/0 1

Pre-Requisites: Engineering Geology Theory

Course Objectives: The objective of this lab is that to provide practical knowledge about physical properties of minerals, rocks, drawing of geological maps, showing faults, uniformities etc.

Course Outcomes: At the end of the course, the student will be able to:

- Understands the method and ways of investigations required for Civil Engg projects
- Identify the various rocks, minerals depending on geological classifications
- Will able to learn to couple geologic expertise with the engineering properties of rock and unconsolidated materials in the characterization of geologic sites for civil work projects and the quantification of processes such as rock slides and settlement.
- Write a technical laboratory report

List of Experiments
1. Study of physical properties of minerals.
2. Study of different group of minerals.
3. Study of Crystal and Crystal system.
4. Identification of minerals: Silica group: Quartz, Amethyst, Opal; Feldspar group: Orthoclase, Plagioclase; Cryptocrystalline group: Jasper; Carbonate group: Calcite; Element group: Graphite; Pyroxene group: Talc; Mica group: Muscovite; Amphibole group: Asbestos, Olivine, Hornblende, Magnetite, Hematite, Corundum, Kyanite, Garnet, Galena, Gypsum.
9. Simple structural Geology Problems (Folds, Faults & Unconformities)

LAB EXAMINATION PATTERN:
1. Description and identification of SIX minerals
2. Description and identification of Six (including igneous, sedimentary and metamorphic rocks)
3. Interpretation of a Geological map along with a geological section.
4. Simple strike and Dip problems.
5. Microscopic identification of rocks.
The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the “basic structure” of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of “Constitutionalism” – a modern and progressive concept historically developed by the thinkers of “liberalism” – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of “constitutionalism” in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India’s legacy of “diversity”. It has been said that Indian constitution reflects ideals of its freedom movement; however, few critics have argued that it does not truly incorporate our own ancient legal heritage and cultural values. No law can be “static” and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution but also strengthened the same through progressive interpretations of the text of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it “as one of the strongest court in the world”.

Course content
1. Meaning of the constitution law and constitutionalism
2. Historical perspective of the Constitution of India
3. Salient features and characteristics of the Constitution of India
4. Scheme of the fundamental rights
5. The scheme of the Fundamental Duties and its legal status
6. The Directive Principles of State Policy – Its importance and implementation
7. Federal structure and distribution of legislative and financial powers between the Union and the States
8. Parliamentary Form of Government in India – The constitution powers and status of the President of India
9. Amendment of the Constitutional Powers and Procedure
10. The historical perspectives of the constitutional amendments in India
12. Local Self Government – Constitutional Scheme in India
13. Scheme of the Fundamental Right to Equality
14. Scheme of the Fundamental Right to certain Freedom under Article 19
15. Scope of the Right to Life and Personal Liberty under Article 21
Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

UNIT - I:
D.C. CIRCUITS
Electrical circuit elements (R, L and C), voltage and current sources, KVL&KCL, analysis of simple circuits with dc excitation.

A.C. CIRCUITS
Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor, Analysis of single-phase ac circuits, Three-phase balanced circuits, voltage and current relations in star and delta connections.

UNIT - II:
ELECTRICAL INSTALLATIONS
Components of LT Switchgear: Switch Fuse Unit (SFU), MCB, ELCB, MCCB, Types of Wires and Cables, Earthing. Types of Batteries, Important Characteristics for Batteries. Elementary calculations for energy consumption, power factor improvement and battery backup.

UNIT - III:
ELECTRICAL MACHINES

UNIT - IV:
P-N JUNCTION AND ZENER DIODE: Principle of Operation Diode equation, Volt-Ampere characteristics, Temperature dependence, Ideal versus practical, Static and dynamic resistances, Equivalent circuit, Zener diode characteristics and applications.
RECTIFIERS AND FILTERS: P-N junction as a rectifier - Half Wave Rectifier, Ripple Factor - Full Wave Rectifier, Bridge Rectifier, Harmonic components in Rectifier Circuits, Filters – Inductor Filters, Capacitor Filters, L- section Filters, π- section Filters.
UNIT - V:
FIELD EFFECT TRANSISTOR (FET): Construction, Principle of Operation, Comparison of BJT and FET, Biasing FET.

TEXT BOOKS:
1. Basic Electrical and electronics Engineering –M S Sukija TK Nagasarkar Oxford University

REFERENCES:
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
CE402ES: BASIC MECHANICAL ENGINEERING FOR CIVIL ENGINEERS

B.Tech. II Year II Sem.

Course Objectives: To familiarize civil engineering students with the
- Basic machine elements,
- Sources of Energy and Power Generation,
- Various manufacturing processes,
- Power transmission elements, material handling equipment.

Course Outcome: At the end of the course Student will able
- To understand the mechanical equipment for the usage at civil engineering systems,
- To familiarize with the general principles and requirement for refrigeration, manufacturing,
- To realize the techniques employed to construct civil engineering systems.

UNIT - I:
Machine Elements: Cams: Types of cams and followers
Introduction to engineering materials - Metals, ceramics, composites - Heat treatment of metals

UNIT - II:
Material Handling equipment: Introduction to Belt conveyors, cranes, industrial trucks, bull dozers.

UNIT - III:
Refrigeration: Mechanical Refrigeration and types – units of refrigeration – Air Refrigeration system, details and principle of operation –calculation of COP
Modes and mechanisms of heat transfer – Basic laws of heat transfer –General discussion about applications of heat transfer.

UNIT - IV:
Casting: Types, equipments, applications.

UNIT - V:

TEXT BOOKS:
REFERENCE BOOKS:
CE403PC: BUILDING MATERIALS, CONSTRUCTION AND PLANNING

B.Tech. II Year II Sem.

Course Objectives: The objectives of the course is to

- List the construction material.
- Explain different construction techniques
- Understand the building bye-laws
- Highlight the smart building materials

Course Outcomes: After the completion of the course student should be able to

- Define the Basic terminology that is used in the industry
- Categorize different building materials, properties and their uses
- Understand the Prevention of damage measures and good workmanship
- Explain different building services

UNIT - I

Stones and Bricks, Tiles: Building stones – classifications and quarrying – properties – structural requirements – dressing.
Bricks – Composition of Brick earth – manufacture and structural requirements, Fly ash, Ceramics.

UNIT - II

Cement & Admixtures: Ingredients of cement – manufacture – Chemical composition – Hydration - field & lab tests.
Admixtures – mineral & chemical admixtures – uses.

UNIT - III

Building Components: Lintels, Arches, walls, vaults – stair cases – types of floors, types of roofs – flat, curved, trussed; foundations – types; Damp Proof Course; Joinery – doors – windows – materials – types.

Building Services: Plumbing Services: Water Distribution, Sanitary – Lines & Fittings; Ventilations: Functional requirements systems of ventilations, Air-conditioning - Essentials and Types; Acoustics – characteristic – absorption – Acoustic design; Fire protection – Fire Hazards – Classification of fire-resistant materials and constructions

UNIT - IV

Mortars, Masonry and Finishing’s Mortars: Lime and Cement Mortars Brick masonry – types – bonds; Stone masonry – types; Composite masonry – Brick-stone composite; Concrete, Reinforced brick.

Finishers: Plastering, Pointing, Painting, Claddings – Types – Tiles – ACP.

Form work: Types: Requirements – Standards – Scaffolding – Design; Shoring, Underpinning.

UNIT – V

Building Planning: Principles of Building Planning, Classification of buildings and Building by laws.

TEXT BOOKS:

REFERENCE BOOKS:
2. Building Materials by P. C. Varghese, PHI.
3. Building Construction by PC Varghese PHI.
5. Alternate Building Materials and Technology, Jagadish, Venkatarama Reddy and others; New Age Publications.
Pre-Requisites: Strength of Materials - I

Course Objectives: The objective of this Course is

- To understand the nature of stresses developed in simple geometries shafts, springs, columns & cylindrical and spherical shells for various types of simple loads
- To calculate the stability and elastic deformation occurring in various simple geometries for different types of loading.
- To understand the unsymmetrical bending and shear center importance for equilibrium conditions in a structural member of having different axis of symmetry.

Course Outcome: On completion of the course, the student will be able to:

- Describe the concepts and principles, understand the theory of elasticity, and perform calculations, relative to the strength of structures and mechanical components in particular to torsion and direct compression;
- To evaluate the strains and deformation that will result due to the elastic stresses developed within the materials for simple types of loading
- Analyze strength and stability of structural members subjected to Direct, and Direct and Bending stresses;
- Understand and evaluate the shear center and unsymmetrical bending.
- Frame an idea to design a system, component, or process

UNIT – I
SPRINGS: Introduction – Types of springs – deflection of close and open coiled helical springs under axial pull and axial couple – springs in series and parallel.

UNIT – II
BEAM COLUMNS: Laterally loaded struts – subjected to uniformly distributed and concentrated loads.

UNIT - III
DIRECT AND BENDING STRESSES: Stresses under the combined action of direct loading and bending moment, core of a section – determination of stresses in the case of retaining walls, chimneys and dams – conditions for stability-Overturning and sliding – stresses due to direct loading and bending moment about both axis.

UNIT – IV

UNIT – V
UNS YMMETRICAL BENDING:
Introduction – Centroidal principal axes of section –Moments of inertia referred to any set of rectangular axes – Stresses in beams subjected to unsymmetrical bending – Principal axes – Resolution of bending moment into two rectangular axes through the centroid – Location of neutral axis.
SHEAR CENTRE: Introduction - Shear centre for symmetrical and unsymmetrical (channel, I, T and L) sections

TEXT BOOKS:
2. Mechanics of Materials by Dr. B. C Punmia, Dr. Ashok Kumar Jain and Dr. Arun Kumar Jain

REFERENCE BOOKS:
1) Mechanics of Materials by R.C. Hibbeler, Pearson Education
CE405PC: HYDRAULICS AND HYDRAULIC MACHINERY

B.Tech. II Year II Sem. L T/P/D C
3 0/0/0 3

Course Objectives: The objective of the course is
- To define the fundamental principles of water conveyance in open channels.
- To discuss and analyze the open channels in uniform and non-uniform flow conditions.
- To study the characteristics of hydroelectric power plant and its components.
- To analyze and design of hydraulic machinery and its modeling.

Course Outcomes: At the end of the course the student will able to
- Apply their knowledge of fluid mechanics in addressing problems in open channels and hydraulic machinery.
- Understand and solve problems in uniform, gradually and rapidly varied flows in open channel in steady state conditions.
- Apply dimensional analysis and to differentiate the model, prototype and similitude conditions for practical problems.
- Get the knowledge on different hydraulic machinery devices and its principles that will be utilized in hydropower development and for other practical usages.

UNIT - I

UNIT - II
Rapidly varied flow: Elements and characteristics (Length and Height) of Hydraulic jump in rectangular channel – Types, applications and location of hydraulic jump, Energy dissipation and other uses – Positive and Negative Surges (Theory only).

UNIT - III
Basics of Turbo Machinery: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes, Jet striking centrally and at tip, Velocity triangles at inlet and outlet, expressions for work done and efficiency – Angular

UNIT - IV

UNIT - V

TEXT BOOKS:
3. Fluid mechanics & Hydraulic Machines, Domkundwar & Domkundwar Dhanpat Rai &Co

REFERENCE BOOKS:
1. Fluid Mechanics by R. C. Hibbeler, Pearson India Education Services Pvt. Ltd
2. Fluid Mechanic & Fluid Power Engineering by D. S. Kumar (Kataria & Sons Publications Pvt. Ltd.).
5. Hydraulic Machines by Banga & Sharma (Khanna Publishers).
CE406PC: STRUCTURAL ANALYSIS – I

B.Tech. II Year II Sem. L T/P/D C
3 0/0/0 3

Pre-Requisites: Strength of Materials – I

Course Objectives: The objective of the course is to
- Differentiate the statically determinate and indeterminate structures.
- To understand the nature of stresses developed in perfect frames and three hinged arches for various types of simple loads.
- Analyse the statically indeterminate members such as fixed bars, continuous beams and for various types of loading.
- Understand the energy methods used to derive the equations to solve engineering problems.
- Evaluate the Influence on a beam for different static & moving loading positions.

Course Outcomes: At the end of the course the student will be able to
- An ability to apply knowledge of mathematics, science, and engineering.
- Analyse the statically indeterminate bars and continuous beams.
- Draw strength behaviour of members for static and dynamic loading.
- Calculate the stiffness parameters in beams and pin jointed trusses.
- Understand the indeterminacy aspects to consider for a total structural system.
- Identify, formulate, and solve engineering problems with real time loading.

UNIT – I
ANALYSIS OF PERFECT FRAMES: Types of frames - Perfect, Imperfect and Redundant pin jointed plane frames - Analysis of determinate pin jointed plane frames using method of joints, method of sections and tension coefficient method for vertical loads, horizontal loads and inclined loads.

UNIT – II
ENERGY THEOREMS: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces - Castigliano’s theorem-Unit Load Method - Deflections of simple beams and pin-jointed plane frames - Deflections of statically determinate bent frames.

THREE HINGED ARCHES – Introduction – Types of Arches – Comparison between Three hinged and Two hinged Arches - Linear Arch - Eddy’s theorem - Analysis of Three hinged arches - Normal Thrust and radial shear and bending moment - Geometrical properties of parabolic and circular arches - Three hinged parabolic circular arches having supports at different levels.

UNIT – III
PROPPED CANTILEVER and FIXED BEAMS: Determination of static and kinematic indeterminacies for beams- Analysis of propped cantilever and fixed beams, including the beams with different moments of inertia - subjected to uniformly distributed load - point loads - uniformly varying load, couple and combination of loads - Shear force, Bending moment diagrams and elastic curve for Propped Cantilever and Fixed Beams - Deflection of propped cantilever and fixed beams - effect of sinking of support, effect of rotation of a support.

UNIT – IV
CONTINUOUS BEAMS: Introduction-Continuous beams - Clapeyron’s theorem of three moments-Analysis of continuous beams with constant and variable moments of inertia with one or both ends fixed-continuous beams with overhang - effect of sinking of supports.
SLOPE DEFLECTION METHOD: Derivation of slope-deflection equation, application to continuous beams with and without sinking of supports - Determination of static and kinematic indeterminacies for frames - Analysis of Single Bay, Single storey Portal Frames by Slope Deflection Method including Side Sway - Shear force and bending moment diagrams and Elastic curve.

UNIT – V
MOVING LOADS and INFLUENCE LINES: Introduction maximum SF and BM at a given section and absolute maximum shear force and bending moment due to single concentrated load ,uniformly distributed load longer than the span, uniformly distributed load shorter than the span, two point loads with fixed distance between them and several point loads-Equivalent uniformly distributed load- Focal length - Definition of influence line for shear force and bending moment - load position for maximum shear force and maximum bending Moment at a section - Point loads, uniformly distributed load longer than the span, uniformly distributed load shorter than the span- Influence lines for forces in members of Pratt and Warren trusses - Equivalent uniformly distributed load -Focal length.

TEXT BOOKS:

REFERENCES:
1. Structural Analysis by R. C. Hibbeler, Pearson Education
CE407PC: COMPUTER AIDED CIVIL ENGINEERING DRAWING

B.Tech. II Year II Sem.

Course Outcomes: At the end of the course, the student will be able to:
- Use the Autocad commands for drawing 2D & 3D building drawings required for different civil engg applications.
- Plan and draw Civil Engineering Buildings as per aspect and orientation.
- Presenting drawings as per user requirements and preparation of technical report

Course Objectives: The objective of this lab is to teach the student usage of Auto cad and basic drawing fundamentals in various civil engineering applications, specially in building drawing.

List of Experiments:
1. Introduction to computer aided drafting and different coordinate system
2. Drawing of Regular shapes using Editor mode
3. Introduction GUI and drawing of regular shapes using GUI
4. Exercise on Draw tools
5. Exercise on Modify tools
6. Exercise on other tools (Layers, dimensions, texting etc.)
7. Drawing of building components like walls, lintels, Doors, and Windows. using CAD software
8. Drawing a plan of Building and dimensioning
9. Drawing a plan of a residential building using layers
10. Developing a 3-D plan from a given 2-D plan
11. Developing sections and elevations for given
 a) Single storied buildings b) multi storied buildings
12. Auto CAD applications in surveying, mechanics etc.

TEXT BOOKS:
Course Objectives:

- To **identify** the behavior of analytical models introduced in lecture to the actual behavior of real fluid flows.
- To **explain** the standard measurement techniques of fluid mechanics and their applications.
- To **illustrate** the students with the components and working principles of the Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- To **analyze** the laboratory measurements and to document the results in an appropriate format.

Course Outcomes: Students who successfully complete this course will have demonstrated ability to:

- **Describe** the basic measurement techniques of fluid mechanics and its appropriate application.
- **Interpret** the results obtained in the laboratory for various experiments.
- **Discover** the practical working of Hydraulic machines- different types of Turbines, Pumps, and other miscellaneous hydraulics machines.
- **Compare** the results of analytical models introduced in lecture to the actual behavior of real fluid flows and draw correct and sustainable conclusions.
- **Write a technical laboratory report**

List of Experiments:

1. Verification of Bernoulli’s equation
2. Determination of Coefficient of discharge for a small orifice by a constant head method
3. Calibration of Venturimeter / Orifice Meter
4. Calibration of Triangular / Rectangular/Trapezoidal Notch
5. Determination of Minor losses in pipe flow
6. Determination of Friction factor of a pipe line
7. Determination of Energy loss in Hydraulic jump
8. Determination of Manning’s and Chezy’s constants for Open channel flow.
9. Impact of jet on vanes
10. Performance Characteristics of Pelton wheel turbine
11. Performance Characteristics of Francis turbine
12. Performance characteristics of Keplan Turbine
13. Performance Characteristics of a single stage / multi stage Centrifugal Pump
EE409ES: BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LAB

B.Tech. II Year II Sem.

Pre-requisites: Basic Electrical and Electronics Engineering

Course Objectives:
- To introduce the concepts of electrical circuits and its components
- To understand magnetic circuits, DC circuits and AC single phase & three phase circuits
- To study and understand the different types of DC/AC machines and Transformers.
- To import the knowledge of various electrical installations.
- To introduce the concept of power, power factor and its improvement.
- To introduce the concepts of diodes & transistors, and
- To impart the knowledge of various configurations, characteristics and applications.

Course Outcomes:
- To analyze and solve electrical circuits using network laws and theorems.
- To understand and analyze basic Electric and Magnetic circuits
- To study the working principles of Electrical Machines
- To introduce components of Low Voltage Electrical Installations
- To identify and characterize diodes and various types of transistors.

List of experiments/demonstrations:

PART A: ELECTRICAL
1. Verification of KVL and KCL
2. (i) Measurement of Voltage, Current and Real Power in primary and Secondary Circuits of a Single-Phase Transformer
 (ii) Verification of Relationship between Voltages and Currents (Star-Delta, Delta-Delta, Delta-star, Star-Star) in a Three Phase Transformer
4. Performance Characteristics of a Separately Excited DC Shunt Motor
5. Performance Characteristics of a Three-phase Induction Motor
6. No-Load Characteristics of a Three-phase Alternator

PART B: ELECTRONICS
1. Study and operation of
 (i) Multi-meters (ii) Function Generator (iii) Regulated Power Supplies (iv) CRO.
2. PN Junction diode characteristics
3. Zener diode characteristics and Zener as voltage Regulator
4. Input & Output characteristics of Transistor in CB / CE configuration
5. Full Wave Rectifier with & without filters
6. Input and Output characteristics of FET in CS configuration

TEXT BOOKS:
1. Basic Electrical and electronics Engineering – M S Sukija TK Nagasarkar Oxford University

REFERENCES:
6. Network Theory by Sudhakar, Shyam Mohan Palli, TMH.
MC409/MC309: GENDER SENSITIZATION LAB
(An Activity-based Course)

B.Tech. II Year II Sem.

<table>
<thead>
<tr>
<th>L</th>
<th>T/P/D</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0/2/0</td>
<td>0</td>
</tr>
</tbody>
</table>

COURSE DESCRIPTION
This course offers an introduction to Gender Studies, an interdisciplinary field that asks critical questions about the meanings of sex and gender in society. The primary goal of this course is to familiarize students with key issues, questions and debates in Gender Studies, both historical and contemporary. It draws on multiple disciplines – such as literature, history, economics, psychology, sociology, philosophy, political science, anthropology and media studies – to examine cultural assumptions about sex, gender, and sexuality.

This course integrates analysis of current events through student presentations, aiming to increase awareness of contemporary and historical experiences of women, and of the multiple ways that sex and gender interact with race, class, caste, nationality and other social identities. This course also seeks to build an understanding and initiate and strengthen programmes combating gender-based violence and discrimination. The course also features several exercises and reflective activities designed to examine the concepts of gender, gender-based violence, sexuality, and rights. It will further explore the impact of gender-based violence on education, health and development.

Objectives of the Course:
- To develop students’ sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Learning Outcomes:
- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I: UNDERSTANDING GENDER
UNIT – II: GENDER ROLES AND RELATIONS
Two or Many? -Struggles with Discrimination-Gender Roles and Relations-Types of Gender Roles- Gender Roles and Relationships Matrix-Missing Women-Sex Selection and Its Consequences- Declining Sex Ratio. Demographic Consequences-Gender Spectrum: Beyond the Binary

UNIT – III: GENDER AND LABOUR

UNIT – IV: GENDER - BASED VIOLENCE

UNIT – V: GENDER AND CULTURE
Gender and Film-Gender and Electronic Media-Gender and Advertisement-Gender and Popular Literature- Gender Development Issues-Gender Issues-Gender Sensitive Language-Gender and Popular Literature - Just Relationships: Being Together as Equals

Note: Since it is Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

➢ Classes will consist of a combination of activities: dialogue-based lectures, discussions, collaborative learning activities, group work and in-class assignments. Apart from the above prescribed book, Teachers can make use of any authentic materials related to the topics given in the syllabus on “Gender”.

ASSESSMENT AND GRADING:
- Discussion & Classroom Participation: 20%
- Project/Assignment: 30%
- End Term Exam: 50%